(3x + 2y) dx + (2x + y) dy = 0\left(3x\:+\:2y\right)\:dx\:+\:\left(2x\:+\:y\right)\:dy\:=\:0(3x+2y)dx+(2x+y)dy=0
dydx=(1+y2)(1+2x)−1\frac{dy}{dx}=\left(1+y^2\right)\left(1+2x\right)^{-1}dxdy=(1+y2)(1+2x)−1
∫1x2−6x−7dx\int\frac{1}{\sqrt{x^2-6x-7}}dx∫x2−6x−71dx
2x2−1282x^{2}-1282x2−128
4x2+1−44x^2+1-44x2+1−4
9mn+7mn−4mn9mn+7mn-4mn9mn+7mn−4mn
ln((x2+12))\ln\left(\sqrt{\left(x^2+12\right)}\right)ln((x2+12))
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!