$\lim_{x\to\infty}\left(\sqrt{x^2+3x}-\sqrt{x^2+4x}\right)$
$\left(3x+6\right)\left(2x-4\right)$
$\frac{3\left(2x-2\right)}{2}>\frac{6x-3}{5}+\frac{x}{10}$
$\left(b+3c\right)+\left(b+3c\right)$
$\cot x\:x\:\sec x\:x\:\sin x$
$\frac{5}{4.83}$
$12+7+8-\left(5-2-7+4-3\right)-5+9-\left(12-7+8-9-4\right)+8$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!