$\frac{dy}{dx}\left(e^y=2x^3y^2+e^2\right)$
$\lim_{x\to\infty}\left(\frac{1-e^{\frac{1}{z}}}{\frac{-3}{z}}\right)$
$\frac{6}{x^2-x-6}-\frac{4}{x^2-2x-3}$
$\int_0^{2\pi}\left(x^2\sin\left(x\right)\right)dx$
$-8x-30=-12x-58$
$\frac{1+cos\left(x\right)}{1+sec\left(x\right)}=cos\left(x\right)$
$\lim_{x\to1}\left(\frac{t^3-7t+2}{t-1}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!