$\frac{1}{cot^2\left(x\right)}+1=\frac{1}{cos^2\left(x\right)}$
$y'=1+\frac{y}{t}$
$42.9-98$
$\lim_{x\to\infty}\:\frac{6^x-1^x}{3^x}$
$\lim_{x\to1}\left(\frac{x^2-6x+5}{\left(x-1\right)\cdot\left(x^2-3x+2\right)}\right)$
$7\:\:\left(4m^3\right)\left(125\right)$
$n^2+3n+4$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!