$\sqrt{1+x^2}\left(\frac{dy}{dx}\right)=\frac{x}{y}$
$4\left(x^2-10x\right)+4\left(y^2-6y\right)=-225$
$\lim_{x\to\infty}\left(x+32x^2-x+1\right)$
$\int\frac{x^2-5}{x\left(x+1\right)^2}dx$
$\lim_{x\to0}\left(\frac{2-2\cos\left(5x\right)}{\sin\left(5x\right)}\right)$
$\frac{d}{dx}5^{4x}$
$\lim_{x\to0}\left(\frac{\left(e^{8x}-1-8x\right)}{x^2}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!