3x+4<13x+123x+4<13x+123x+4<13x+12
4x3+3x2=04x^3+3x^2=04x3+3x2=0
f(x)=in[2+in(x)]f\left(x\right)=in\left[2+in\left(x\right)\right]f(x)=in[2+in(x)]
3x2+2x−13x\frac{3x^2+2x-1}{3x}3x3x2+2x−1
∫4x+1(x−1)(x+3)dx\int\frac{4x+1}{\left(x-1\right)\left(x+3\right)}dx∫(x−1)(x+3)4x+1dx
∫5x4−2x2−3x+2x−8dx\int\frac{5x^4-2x^2-3x+2}{x-8}dx∫x−85x4−2x2−3x+2dx
322w5+2432y5w+3y\frac{32^2w^5+243^2y^5}{w+3y}w+3y322w5+2432y5
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!