$\left(3xy^2+10x^2y^3-12xy^4\right)$
$\lim_{x\to\infty}\left(\left(1+\frac{10}{x}\right)^{\frac{x}{5}}\right)$
$\frac{8x^2+16x-2}{2x+3}$
$\int\frac{4x^2+9}{\left(x^2+3x\right)}dx$
$\left(a^x+a^{-x}\right)\left(a^{2x}-1+a^{-2x}\right)$
$-2\cdot\left(-4\right)\cdot10$
$\frac{dy}{dx}=\frac{x^2+4}{y^2-5};\:y\left(0\right)=1$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!