ddxx2y2+x2y2=1\frac{d}{dx}x^2y^2+x^2y^2=1dxdx2y2+x2y2=1
limx→∞(4x3+32x3+3x)x2+2x2\lim_{x\to\infty}\left(\frac{4x^3+3}{2x^3+3x}\right)^{\frac{x^2+2}{x^2}}x→∞lim(2x3+3x4x3+3)x2x2+2
(4x2+4x+1)4\left(4x^2+4x+1\right)^4(4x2+4x+1)4
(x−8)⋅(−x+3)<0\left(x-8\right)\cdot\left(-x+3\right)<0(x−8)⋅(−x+3)<0
sec2(a)+csc2(a)=1sin2(a)⋅cos2(a)\sec^2\left(a\right)+\csc^2\left(a\right)=\frac{1}{\sin^2\left(a\right)\cdot\cos^2\left(a\right)}sec2(a)+csc2(a)=sin2(a)⋅cos2(a)1
32x4−2x232x^4-2x^232x4−2x2
2x+3−x2x+3-x2x+3−x
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!