∫(x+2)x+1dx\int\left(x+2\right)\sqrt{x+1}dx∫(x+2)x+1dx
−1eydydx=2x+1\frac{-1}{e^y}\frac{dy}{dx}=2x+1ey−1dxdy=2x+1
(2a2+b3)(2a2−b3)\left(2a^2+b^3\right)\left(2a^2-b^3\right)(2a2+b3)(2a2−b3)
limx→π2(secx−11−sinx)\lim_{x\to\frac{\pi}{2}}\left(secx-\frac{1}{1-sinx}\right)x→2πlim(secx−1−sinx1)
−3xy2, 21xy3, and 15xy2-3xy^2,\:21xy^3,\:and\:15xy^2−3xy2,21xy3,and15xy2
12+11⋅(−6)3⋅(−6)\frac{12+11\cdot\left(-6\right)}{3\cdot\left(-6\right)}3⋅(−6)12+11⋅(−6)
∫02(x2e−2x)dx\int_0^2\left(x^2e^{-2x}\right)dx∫02(x2e−2x)dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!