Use the trigonometric identity: 1−cos(2x)=2sin(x)21-\cos\left(2x\right)=2\sin\left(x\right)^21−cos(2x)=2sin(x)2
Try other ways to solve this exercise
∫2t7+3t3dt\int\frac{2t^7+3}{t^3}dt∫t32t7+3dt
∫x(x2+x)dx\int x\left(x^2+x\right)dx∫x(x2+x)dx
(5)(1501)(2501)\left(5\right)\left(\frac{150}{1}\right)\left(\frac{250}{1}\right)(5)(1150)(1250)
(1−cosx).cscx=1\left(1-cosx\right).cscx=1(1−cosx).cscx=1
limx→∞(5x−100x−2)\lim_{x\to\infty}\left(\frac{5x-100}{x^{-2}}\right)x→∞lim(x−25x−100)
5n2 + n−7 + 3n−2n25n^2\:+\:n-7\:+\:3n-2n^25n2+n−7+3n−2n2
21+24⋅221+24\cdot221+24⋅2
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!