$\int_{10}^{\infty}x\cdot\left(0.0005\cdot\left(20-x\right)\right)dx$
$\frac{-8x^2+12xy-4y^2}{x+y}$
$\frac{dy}{dx}=\frac{5x}{8y\sqrt{x^2+1}}$
$\left(2\sqrt{3x}-8\right)^2$
$a^2-ab+b^2+a^2-5b^2$
$a^{2}+2a-3\left(a+3\right)$
$\frac{15}{32}\:x\:\frac{16}{25}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!