$\left(x+\frac{2}{5}\right)\left(x-\frac{3}{4}\right)$
$8x^6-3x^6-2x^6$
$\frac{\sec\left(\infty\right)}{\tan\left(\infty\right)+\cot\left(\infty\right)}=\sin\left(\infty\right)$
$p\left(x+x^{-1}\right)\:-\:x^3\:+\:x^{-3}$
$\int\frac{x^2\:-\:2x\:-1}{\left(x-1\right)^2\left(x^2+1\right)}dx$
$\sqrt[7]{5^7}$
$\left(1+\frac{3i}{2}\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!