∫e−x(1+e−x)2dx\int e^{-x}\left(1+e^{-x}\right)^2dx∫e−x(1+e−x)2dx
dydx=e5x+4y\frac{dy}{dx}=e^{5x}+4ydxdy=e5x+4y
3x3+x2+x−2x2+1\frac{3x^3+x^2+x-2}{x^2+1}x2+13x3+x2+x−2
x3+2xy3=6xyx^3+2xy^3=6xyx3+2xy3=6xy
30.125^{3\sqrt{0.125}}30.125
32y3(y2−5)2−32yy2−5−10y=0\frac{32y^3}{\left(y^2-5\right)^2}-\frac{32y}{y^2-5}-10y=0(y2−5)232y3−y2−532y−10y=0
4⋅1+4⋅34\cdot1+4\cdot34⋅1+4⋅3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!