∫x186dx\int\sqrt[6]{x^{18}}dx∫6x18dx
2(x+3)+3(x+1)>22\left(x+3\right)+3\left(x+1\right)>22(x+3)+3(x+1)>2
dr−rdx=0dr-rdx=0dr−rdx=0
dydx=2t+sec2t2u\frac{dy}{dx}=\frac{2t+sec^2t}{2u}dxdy=2u2t+sec2t
limx→+∞(2x4−3xx4+1)\lim_{x\to+\infty}\left(\frac{2x^4-3x}{x^4+1}\right)x→+∞lim(x4+12x4−3x)
ddx((x−1)(x+1)3x−4)\frac{d}{dx}\left(\sqrt{\frac{\left(x-1\right)\left(x+1\right)}{3x-4}}\right)dxd(3x−4(x−1)(x+1))
(9−z2)(9−3z2)\left(9-z^2\right)\left(9-3z^2\right)(9−z2)(9−3z2)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!