12−4⋅1+31^2-4\cdot1+312−4⋅1+3
1−tan(θ )1+tan(θ )=cos(θ )−sin(θ )cos(θ )+sin(θ )\frac{1-tan\left(\theta\:\right)}{1+tan\left(\theta\:\right)}=\frac{cos\left(\theta\:\right)-sin\left(\theta\:\right)}{cos\left(\theta\:\right)+sin\left(\theta\:\right)}1+tan(θ)1−tan(θ)=cos(θ)+sin(θ)cos(θ)−sin(θ)
−(2)3+3(2)2+7(2)-\left(2\right)^3+3\left(2\right)^2+7\left(2\right)−(2)3+3(2)2+7(2)
12x2=1x−12\frac{1}{2x^2}=\frac{1}{x}-\frac{1}{2}2x21=x1−21
81a2−36ac+4c281a^2-36ac+4c^281a2−36ac+4c2
x3+x2+12xx^3+x^2+12xx3+x2+12x
y2+2cx+c2=0y^2+2cx+c^2=0y2+2cx+c2=0
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!