$\lim_{x\to0}\left(\sqrt{5+x}1-\sqrt{5-x}\right)$
$\frac{2x}{3\:}-\frac{x}{4}<-\frac{11}{3}-\frac{x}{2}$
$\:\frac{1-tan^2\theta\:}{1+tan^2\theta\:}=1-2sin^2\theta\:$
$12+4x=-4x-12$
$\frac{dy}{dx}\sqrt[3]{6y-5}=x^2$
$8x-2=-9+7x$
$\frac{\sin^3\left(x\right)+\sin\left(x\right)\cos^2\left(x\right)}{\cos\left(x\right)}=\tan\left(x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!