$\tan\left(x\right)+\left(\frac{\cos\left(x\right)}{1+\sin\left(x\right)}\right)=\frac{1}{\cos\left(x\right)}$
$2-4+5-+6+34$
$\frac{\left(a^2b^3c^4\right)^8}{\left(a^2b^3c^4\right)^3}$
$90+6u+1-7b^{2}-3b+8b$
$\lim_{x\to0}\left(\frac{e^{-x^2}-1}{tan\left(x^2\right)}\right)$
$\left(7x^2+6x+x^3+4\right)\left(x+3\right)$
$\left(x^2+2y^2\right)\frac{d}{dx}\left(y\right)=xy$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!