Simplifying
$f\left(x\right)=\:\left(\frac{e^x}{x^3-5x^4}\right)^4$
$\log4\left(4xy\right)^3$
$\int_1^{\infty}\left(\frac{x\ln\left(x\right)}{\left(1+x^2\right)^2}\right)dx$
$\left(\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)^{15}$
$\frac{-9}{2}y+9$
$-9^3$
$10:\left(-5\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!