dydx=(x+1)2y3\frac{dy}{dx}=\left(x+1\right)^2y^3dxdy=(x+1)2y3
(4x−2)⋅(5x+6)\left(4x-2\right)\cdot\left(5x+6\right)(4x−2)⋅(5x+6)
(−1x+6)(−1x+6)\left(-1x+6\right)\left(-1x+6\right)(−1x+6)(−1x+6)
−9f−10f+−3f+−8f−5f-9f-10f+-3f+-8f-5f−9f−10f+−3f+−8f−5f
3x−1=2x+3\frac{3}{x-1}=\frac{2}{x+3}x−13=x+32
∫−∞−2(11−x)dx\int_{-\infty}^{-2}\left(\frac{1}{1-x}\right)dx∫−∞−2(1−x1)dx
dydx=cos(x)−sin(x)\frac{dy}{dx}=\cos\left(x\right)-\sin\left(x\right)dxdy=cos(x)−sin(x)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!