$\frac{cosx}{1+sinx}+\frac{\left(1-sinx\right)}{cosx}=\frac{2cosx}{1+sinx}$
$3\left(x-5\right)-5>5\left(x+1\right)-1$
$\frac{6x^4}{x^{-4}y^0}$
$\lim_{x\to\infty}\left(\frac{x^3h+3xh^2+h^3}{2xh+5h^2}\right)$
$2\sin\:\left(p+45^{\circ\:\:}\right)\cos\:\left(p+45^{\circ\:\:}\right)=\cos\:\left(2p\right)$
$\lim_{x\to-3}\frac{\left(x+4\right)}{1}$
$2m^2-3\left(m-2m^2\right)-m^2+4\left(-2+5m^2\right)-2m\left(-3m+1\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!