$\frac{5+y}{5}+\frac{5+z}{6}$
$\lim_{x\to\infty}\left(\frac{3x^2-1}{x^3+4}\right)$
$\int\:\frac{sin^5\left(2x\right)}{\sqrt{cos\left(2x\right)}}dx$
$\int\:\frac{\left(2t+1\right)}{2\left(t^2+t\right)}dt$
$\lim_{x\to0}\left(\frac{x-4}{x-\sqrt[2]{8-x}}\right)$
$\frac{x^2-15x+25}{x-5}$
$\left(4m+5n^3\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!