x3−4x2+8−x−5x^3-4x^2+8-x-5x3−4x2+8−x−5
limx→0(x4−1x6)\lim_{x\to0}\left(\frac{x^4-1}{x^6}\right)x→0lim(x6x4−1)
cos (x)1−sin (x)+1−sin (x)cos(x)=tan(x)\frac{\cos\:\left(x\right)}{1-\sin\:\left(x\right)}+\frac{1-\sin\:\left(x\right)}{cos\left(x\right)}=\tan\left(x\right)1−sin(x)cos(x)+cos(x)1−sin(x)=tan(x)
14m+25n 2 ⋅14m−25n\frac{1}{4}m+\frac{2}{5}n\:2\:\cdot\frac{1}{4}m-\frac{2}{5}n41m+52n2⋅41m−52n
a1n=ana^{\frac{1}{n}}=\sqrt[n]{a}an1=na
2x2+8xx2−16\frac{2x^2+8x}{x^2-16}x2−162x2+8x
5+2tan(x)3+2tan(x)=1+tan(x)\frac{5+2\tan\left(x\right)}{3+2\tan\left(x\right)}=1+\tan\left(x\right)3+2tan(x)5+2tan(x)=1+tan(x)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!