limx→5(2x−10x−5)\lim_{x\to5}\left(\frac{2x-10}{x-5}\right)x→5lim(x−52x−10)
(u+10)(u−10)\left(u+10\right)\left(u-10\right)(u+10)(u−10)
x2+7x=98x^2+7x=98x2+7x=98
3x2−5x+2x−5\frac{3x^2-5x+2}{x-5}x−53x2−5x+2
5(−2n−3)+2n5\left(-2n-3\right)+2n5(−2n−3)+2n
∫5x3+2x2−40x−21x2−9dx\int\frac{5x^3+2x^2-40x-21}{x^2-9}dx∫x2−95x3+2x2−40x−21dx
limx→∞(5x3+8x)\lim_{x\to\infty}\left(5x^3+8x\right)x→∞lim(5x3+8x)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!