$\cos^2\left(3x\right)\sin\left(3x\right)$
$-x^2-7-30$
$\int\frac{1}{x^{2}-16}dx$
$2x+3=13$
$\left(10x^3+11x^2-3x\right)+\left(4x^3+6x^2+3\right)$
$\lim_{x\to\infty}\left(\frac{ln\left(x^2+x^3\right)}{ln\left(x+1\right)}\right)$
$\log_{10}\left(2x+7\right)-\log_{10}\left(x-1\right)=\log_{10}\left(5\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!