$8a^2b+16a^3b^4-24ab^2$
$\lim_{x\to0}\left(\frac{\ln\left(1+e^x\right)}{2x}\right)$
$\frac{dy}{dx}\left(x^2+y^4=5+y\right)$
$\frac{7}{\sqrt{x}}$
$\int_0^2\left(\frac{2}{\sqrt{4-x^2}}\right)dx$
$\lim_{x\to\infty}\left(\frac{1-\cos\frac{12}{x}}{\frac{3}{x}\cdot\sin\frac{4}{x}}\right)$
$5a^3b^2-8a^2b^3+3ab^4$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!