Apply the trigonometric identity: cot(x)=cos(x)sin(x)\cot(x)=\frac{\cos(x)}{\sin(x)}cot(x)=sin(x)cos(x)
Try other ways to solve this exercise
−3x2+4x−3≥0-3x^2+4x-3\ge0−3x2+4x−3≥0
216m3x+6−8n6y+9216m^{3x+6}-8n^{6y+9}216m3x+6−8n6y+9
loga(14)\log_a\left(\frac{1}{4}\right)loga(41)
1 + cos2(30)sin2(30)=2csc2(30)−1\:\frac{1\:+\:cos^2\left(30\right)}{sin^2\left(30\right)}=2csc^2\left(30\right)-1sin2(30)1+cos2(30)=2csc2(30)−1
(35a3b2c−14ab2)(35a3b2c+14ab2)\left(\frac{3}{5}a^3b^2c-\frac{1}{4}ab^2\right)\left(\frac{3}{5}a^3b^2c+\frac{1}{4}ab^2\right)(53a3b2c−41ab2)(53a3b2c+41ab2)
xy3dx+ex2dy=0xy^3dx+e^{x^2}dy=0xy3dx+ex2dy=0
5(−2)2(4)5\left(-2\right)^2\left(4\right)5(−2)2(4)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!