dydx+yx=1x\frac{dy}{dx}+\frac{y}{x}=\frac{1}{x}dxdy+xy=x1
abc+3x−7=135abc+3x-7=135abc+3x−7=135
(−13x3+5x2)2\left(-\frac{1}{3}x^3+5x^2\right)^2(−31x3+5x2)2
(x+h)2\left(x+h\right)^2(x+h)2
tan2y dy = sin3(x)dxtan^2y\:dy\:=\:sin^3\left(x\right)dxtan2ydy=sin3(x)dx
2ln(x)+ln(x4+2x2)2\ln\left(x\right)+\ln\left(x^4+2x^2\right)2ln(x)+ln(x4+2x2)
3x5−9x33 x ^ { 5 } - 9 x ^ { 3 }3x5−9x3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!