$\ln\left(x\right)\left(x^2-2x+3\right)-\int\left(\frac{x^3}{3}-x^2+3x\right)\frac{1}{x}dx$
$\sin\left(b\right)\tan\left(b\right)=\frac{1-\cos^2\left(b\right)}{\cos\left(b\right)}$
$\frac{x^3+5x^2+10x-15}{x-4}$
$\frac{9x^2+12x+4}{3x+2}$
$\sqrt[4]{11^5}.7^7$
$\left(6x^4+5x+9\right)^3$
$\int\frac{6}{\left(x+4\right)\left(x-2\right)}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!