∫π6π3(8sec4(x))dx\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(8sec^4\left(x\right)\right)dx∫6π3π(8sec4(x))dx
limt→∞(2e2t−37+5e4t)\lim_{t\to\infty}\left(\frac{2e^{2t}-3}{7+5e^{4t}}\right)t→∞lim(7+5e4t2e2t−3)
∫0π24(sin(x))dx\int_0^{\frac{\pi^2}{4}}\left(\sin\left(\sqrt{x}\right)\right)dx∫04π2(sin(x))dx
1sec2(x)=sin2(a).cos2(a)+cos(a)\frac{1}{\sec^2\left(x\right)}=\sin^2\left(a\right).\cos^2\left(a\right)+\cos\left(a\right)sec2(x)1=sin2(a).cos2(a)+cos(a)
∫ln9x⋅cos(x)dx\int ln9x\cdot\cos\left(x\right)dx∫ln9x⋅cos(x)dx
6a2−1−8a2−16a^{2-1}-8a^{2-1}6a2−1−8a2−1
5x2+3x+2\frac{5x^2+3}{x+2}x+25x2+3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!