Using the sine of a sum formula: sin(α±β)=sin(α)cos(β)±cos(α)sin(β)\sin(\alpha\pm\beta)=\sin(\alpha)\cos(\beta)\pm\cos(\alpha)\sin(\beta)sin(α±β)=sin(α)cos(β)±cos(α)sin(β), where angle α\alphaα equals xxx, and angle β\betaβ equals −2π-\frac{2}{\pi }−π2
Try other ways to solve this exercise
(sin(x)+cos(x))2\left(\sin\left(x\right)+\cos\left(x\right)\right)^2(sin(x)+cos(x))2
1+cot2x1+cot^2x1+cot2x
tan(x)csc(x)tan\left(x\right)csc\left(x\right)tan(x)csc(x)
tan(x)csc(x)\tan\left(x\right)\csc\left(x\right)tan(x)csc(x)
2+tan2(x)sec2(x)−1\frac{2+\tan^2\left(x\right)}{\sec^2\left(x\right)}-1sec2(x)2+tan2(x)−1
csc2x−1csc^2x-1csc2x−1
2+tan2xsec2x−1\frac{2+tan^2x}{sec^2x}-1sec2x2+tan2x−1
Simplification of trigonometric expressions consists of rewriting an expression with trigonometric functions in a simpler form. To perform this task, we usually use the most common trigonometric identities, and some algebra.
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!