$11n^2-9-2n-9n$
$\lim_{x\to\infty}\left(\frac{\left(x+\frac{1}{x}\right)}{\frac{1}{x}}\right)$
$x\left(1+x\right)\left(y\right)^'+y=\left(1-x^2\right)\left(1+x\right)$
$tan\left(\:x\right)+\frac{1}{tan\left(x\right)}=\frac{\sec\left(x\right)}{\cos\left(x\right)}$
$\frac{x^3-6x^2+11x-6}{x-2}$
$3x-2+\left(5+4x-\left(2x-7\right)\right)$
$3y^2-152y+192$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!