Exercise
$\sec^4\left(x\right)-2\sec^2\left(x\right)+1=\tan^4\left(x\right)$
Step-by-step Solution
Learn how to solve perfect square trinomial problems step by step online. Prove the trigonometric identity sec(x)^4-2sec(x)^2+1=tan(x)^4. Starting from the left-hand side (LHS) of the identity. The trinomial \sec\left(x\right)^4-2\sec\left(x\right)^2+1 is a perfect square trinomial, because it's discriminant is equal to zero. Using the perfect square trinomial formula. Factoring the perfect square trinomial.
Prove the trigonometric identity sec(x)^4-2sec(x)^2+1=tan(x)^4
Final answer to the exercise
true