$2\sin\left(x\right)\cos\left(x\right)=\frac{\sqrt{3}}{2}$
$\lim_{x\to\infty}\left(\frac{2x^3-2x^2+x-3}{x^3+2x^2-x+2}\right)$
$35+\left(-55\right)+39\:+7$
$\cos^2\left(x\right)-\sin^2\left(x\right)=\cos2\left(x\right)$
$\int\frac{\left(7x^3\right)}{\left(4x^2+9\right)^{\frac{3}{2}}}dx$
$y^2+\frac{8}{3}y+\frac{4}{3}=0$
$\left(3^0\right)^3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!