Exercise
$\sec\left(y\right)^2-\tan\left(y\right)\sec\left(y\right)=\frac{1}{1+\sin\left(y\right)}$
Step-by-step Solution
Learn how to solve problems step by step online. Prove the trigonometric identity sec(y)^2-tan(y)sec(y)=1/(1+sin(y)). Starting from the left-hand side (LHS) of the identity. Factor the polynomial \sec\left(y\right)^2-\tan\left(y\right)\sec\left(y\right) by it's greatest common factor (GCF): \sec\left(y\right). Applying the secant identity: \displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}. Multiplying the fraction by \sec\left(y\right)-\tan\left(y\right).
Prove the trigonometric identity sec(y)^2-tan(y)sec(y)=1/(1+sin(y))
Final answer to the exercise
true