limx→0(x−sin(x)1−sin(x))\lim_{x\to0}\left(\frac{x-\sin\left(x\right)}{1-\sin\left(x\right)}\right)x→0lim(1−sin(x)x−sin(x))
xdydx=cos(8x)x−2yx\frac{dy}{dx}=\frac{cos\left(8x\right)}{x}-2yxdxdy=xcos(8x)−2y
limx→∞(13.5x6−2)\lim_{x\to\infty}\left(\frac{1}{3}.\sqrt{5x^6-2}\right)x→∞lim(31.5x6−2)
(x3−x2+4x+2)⋅(x3−2x+8)\left(x^3-x^2+4x+2\right)\cdot\left(x^3-2x+8\right)(x3−x2+4x+2)⋅(x3−2x+8)
5xy(4x−3y)5xy\left(4x-3y\right)5xy(4x−3y)
dydx=9−y210\frac{dy}{dx}=\frac{9-y^2}{10}dxdy=109−y2
3x2−8x+2\frac{3x^2-8}{x+2}x+23x2−8
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!