$\lim_{x\to\infty}\left(\frac{\sin\left(\frac{3}{x}\right)}{\left(1-\cos\left(\frac{2}{x}\right)\cdot x^2\cdot\sin\left(\frac{1}{x}\right)\right)}\right)$
$\frac{1}{\sqrt{sec^2x}}$
$\frac{2x^5y^4}{8y^5}$
$5+\left|-18+11\right|+\left(7+-15\right)-10$
$\frac{3x^4-2x^3-6x^2+3x-2}{x^2+x-2\:}$
$10xy-5z-9xy+4z+z$
$\left(3x^6-4x\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!