$\frac{x+2}{x+1}<2$
$\csc\left(x\right)+\cot\left(x\right)^2=1$
$3r\:\ge\:27$
$y=\left(x^3-2x\right)^2y$
$\lim_{x\to\infty}\frac{\ln\left(x\right)}{3x^3}$
$\int\left(x\cdot\left(2x+2\right)^3\right)dx$
$\frac{1}{\tan\left(x\right)}+\cos\left(x\right)=\frac{\cos\left(x\right)^2}{\tan\left(x\right)-\tan\left(x\right)\sin\left(x\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!