$\int_0^{\pi}\left(4\sin^4\left(x\right)\right)dx$
$\frac{dy}{dx}-y^2-\frac{2}{x}y=\frac{2}{x^2}$
$4r\left(-11\right)^3$
$\lim_{x\to4}\left(\frac{4\:tan\:\left(x+5\right)}{x^2-25}\right)$
$\int\frac{4}{4y-y^2}dy$
$\lim_{k\to9}\left(\frac{cos\left(3t\right)-cos\left(\sqrt{k}t\right)}{k-9}\right)$
$\frac{d}{dx}arcsen\frac{2x}{3}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!