$\frac{dy}{dx}+\frac{y}{3}=\frac{1}{3}\left(1-2x\right)y^4$
$\int_0^{\frac{\pi}{4}}\left(k\cdot r^2\cdot cosx\cdot senx\right)dx$
$2\left(x+h\right)^3+3\left(x+h\right)^2-4\left(x+h\right)-2x^3-3x^2+4x$
$\frac{dy}{dx}=2xy=4x$
$-1-\left(\frac{2+3}{5}\right)-\left(\frac{2^2+3^2}{5^2}\right)-\left(\frac{2^3+3^3}{5^3}\right)-\infty$
$\left(9d-8\right)\left(9d+8\right)=81d+64$
$512^6-a^6$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!