Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Solve using L'Hôpital's rule
- Solve without using l'Hôpital
- Solve using limit properties
- Solve using direct substitution
- Solve the limit using factorization
- Solve the limit using rationalization
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Load more...
Apply the power rule of limits: $\displaystyle{\lim_{x\to a}f(x)^{g(x)} = \lim_{x\to a}f(x)^{\displaystyle\lim_{x\to a}g(x)}}$
Learn how to solve problems step by step online.
${\left(\lim_{x\to7}\left(\frac{x^2-7x+4}{x-3}\right)\right)}^{\lim_{x\to7}\left(\frac{x+1}{x-7}\right)}$
Learn how to solve problems step by step online. Find the limit of ((x^2-7x+4)/(x-3))^((x+1)/(x-7)) as x approaches 7. Apply the power rule of limits: \displaystyle{\lim_{x\to a}f(x)^{g(x)} = \lim_{x\to a}f(x)^{\displaystyle\lim_{x\to a}g(x)}}. Evaluate the limit \lim_{x\to7}\left(\frac{x+1}{x-7}\right) by replacing all occurrences of x by 7. Subtract the values 7 and -7. Add the values 7 and 1.