limx→∞3x−3x2−4x+3\lim_{x\to\infty}\frac{3x-3}{x^2-4x+3}x→∞limx2−4x+33x−3
(2x+13)\left(2x+1^3\right)(2x+13)
∫x2⋅x3−62dx\int x^2\cdot\sqrt[2]{x^3-6}dx∫x2⋅2x3−6dx
limx→0(1−xln(x)2)\lim_{x\to0}\left(\frac{1-x}{\ln\left(x\right)^2}\right)x→0lim(ln(x)21−x)
(yz−yz)\left(yz-yz\right)(yz−yz)
[72⋅ (113)4⋅ (73)3⋅ 113118⋅ (72)5⋅ 116]3\left[\frac{7^2\cdot\:\left(11^3\right)^4\cdot\:\left(7^3\right)^3\cdot\:11^3}{11^8\cdot\:\left(7^2\right)^5\cdot\:11^6}\right]^3[118⋅(72)5⋅11672⋅(113)4⋅(73)3⋅113]3
3x3+x3+5x33x^3+x^3+5x^33x3+x3+5x3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!