$\lim_{x\to\infty}\left(\frac{e^{3x}-e^{-3x}}{ln\left(x+3\right)}\right)$
$\frac{y}{\sqrt{1+y^2}}dy=\frac{x}{\sqrt{1+x}^2}dx$
$7\:x\:\left(-54\right)$
$3x\:^2\:-\:2\:para\:x\:=\:3$
$\int\frac{x}{\sqrt{x^2+5x+4}}dx$
$1.24^9$
$\sqrt[3]{x^5}\cdot\sqrt[5]{x^7}\cdot\sqrt[3]{x^4}\cdot\sqrt[5]{x^8}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!