$\lim_{x\to\infty}\left(\frac{\sqrt{9x+1}}{x+4}\right)$
$\frac{8x^2+2x^3+3}{x^2+2x-1}$
$3x^{2}+2x-5$
$\left(+5\right)-\left(+2\right)-\left(4+6-1\right)-\left(-8-2+5\right)$
$0,6^{\infty}$
$-5\cdot\left[\left(-2\right)^2\cdot\left(-2\right)^3\:\right]+\left[\left(-2\right)^3\cdot\left(3-5\right)^2\:\right]^0\:$
$\left(\frac{7}{6}x^3-\frac{3}{2}\right)\left(\frac{7}{6}x^3-\frac{3}{2}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!