12(2x−12x+1)−1\frac{1}{2\left(\frac{2x-1}{2x+1}\right)-1}2(2x+12x−1)−11
−6−(+5−∣6−(−2+5)−5∣−8)−2-6-\left(+5-\left|6-\left(-2+5\right)-5\right|-8\right)-2−6−(+5−∣6−(−2+5)−5∣−8)−2
y+tan(x)y=cos2(x)y+\tan\left(x\right)y=\cos^2\left(x\right)y+tan(x)y=cos2(x)
limx→∞(3x3+2x2)⋅e−3x\lim_{x\to\infty}\left(3x^3+2x^2\right)\cdot e^{-3x}x→∞lim(3x3+2x2)⋅e−3x
1+sin(−x)1+csc(−x)=−sin(x)\frac{1+\sin\left(-x\right)}{1+\csc\left(-x\right)}=-\sin\left(x\right)1+csc(−x)1+sin(−x)=−sin(x)
y′=2xeyy'=2xe^yy′=2xey
2sin(x)cos(x)−2sin(x)+cos(x)=12\sin\left(x\right)\cos\left(x\right)-2\sin\left(x\right)+\cos\left(x\right)=12sin(x)cos(x)−2sin(x)+cos(x)=1
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!