limx→1(sen(x).cos(x)x+sen(2x))\lim_{x\to1}\left(\frac{sen\left(x\right).cos\left(x\right)}{x+sen\left(2x\right)}\right)x→1lim(x+sen(2x)sen(x).cos(x))
−12x+4=−7x−16-12x+4=-7x-16−12x+4=−7x−16
−12+27−14−19+63−28-12+27-14-19+63-28−12+27−14−19+63−28
19−(−26)−(−49)−15−(−29)−(−27)−(−12)−(−37)−4819-\left(-26\right)-\left(-49\right)-15-\left(-29\right)-\left(-27\right)-\left(-12\right)-\left(-37\right)-4819−(−26)−(−49)−15−(−29)−(−27)−(−12)−(−37)−48
−4 ⋅8-4\:\cdot8−4⋅8
∫−22(3xe4−2x2)dx\int_{-2}^2\left(3xe^{4-2x^2}\right)dx∫−22(3xe4−2x2)dx
−1⋅13+12-1\cdot13+12−1⋅13+12
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!