Evaluate the limit limx→1(cot(x)21+2sin(x))\lim_{x\to1}\left(\frac{\cot\left(x\right)^2}{1+\sqrt{2}\sin\left(x\right)}\right)limx→1(1+2sin(x)cot(x)2) by replacing all occurrences of xxx by 111
Try other ways to solve this exercise
8.7⋅58.7\cdot58.7⋅5
92x(2)−196x(2)92x^{\left(2\right)}-196x^{\left(2\right)}92x(2)−196x(2)
∫1x2 dx\int\frac{1}{x^{2\:}}dx∫x21dx
10x−6y+4z−3410x-6y+4z-3410x−6y+4z−34
sin2x−0.64=0sin^2x-0.64=0sin2x−0.64=0
∫(1−x2)2xdx\int\left(1-x^2\right)^2xdx∫(1−x2)2xdx
5sinx−3=−65sinx-3=-65sinx−3=−6
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!