(1−x2)dydx=(1+y2)\left(1-x^2\right)\frac{dy}{dx}=\left(1+y^2\right)(1−x2)dxdy=(1+y2)
−509−696-509-696−509−696
limx→0(3x2+tan2(2x)sin2(4x))\lim_{x\to0}\left(\frac{3x^2+\tan^2\left(2x\right)}{\sin^2\left(4x\right)}\right)x→0lim(sin2(4x)3x2+tan2(2x))
10a−a10a-a10a−a
12−75u212-75u^212−75u2
limx→−5(x+5)∣x+5∣\lim_{x\to-5}\frac{\left(x+5\right)}{\left|x+5\right|}x→−5lim∣x+5∣(x+5)
dydxesinx\frac{dy}{dx}e^{sinx}dxdyesinx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!