$\lim\:_{k\to\:\infty\:}\left(\frac{\left(-6\right)^k-7\left(4^{2k-2}\right)}{3^{3k-3}}\right)$
$49a^4b^4-16c^4$
$x^2+8x+1>3x-5$
$67-\infty$
$s^2+5s+10$
$x^3-3x^2-25x-21$
$\frac{\left(x-a\right)}{b}+\frac{\left(x-b\right)}{a}=2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!