$\lim_{x\to+\infty}\left(1+\frac{6}{x}\right)^x$
$\log_{17}\left(-8x+2\right)=\log_{17}\left(x^2+17\right)$
$\frac{2x^2-8}{x-2}$
$3x^3-2x^2-7x+6$
$3\:\frac{\left(sin45+\:tan30\right)}{cos60}$
$\frac{dy}{dx}=\frac{3}{x+3};y\left(0\right)=3$
$\left(\sin^2\left(x\right)-1\right)\left(\sec^2\left(x\right)-1\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!