$\lim_{x\to\infty}\frac{2x-1}{x+8}$
$sin^2x-cos^2x=1-2sin^2x$
$-2\cdot4+1$
$8a^2+12ab-2ga$
$\lim_{x\to0}\left(\frac{\cos3x-\cos x}{x}\right)$
$\int\:-\frac{sin^2\left(3x\right)}{cos\left(3x\right)}dx$
$\int\left(\frac{x^3}{x^2+8x+16}\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!